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Abstract

Park and Pham successfully proved the renowned Kahn-Kalai conjecture,

offering an elegant upper-bound solution for thresholds which is a core

problem in random discrete structures. In this survey focusing on the

Kahn-Kalai conjecture, we will offer many examples to make the conjec-

ture more motivated. Additionally, we will give various applications to

vividly illustrate the profound significance of this conjecture.
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Chapter 1

Introduction

The field of random graphs was initiated by Erdős and Rényi in their pioneering

paper [11] in 1960. In this seminal work, they introduced two models of random

graphs G = G(V,E) where V = [n] := {1, ..., n} and E a subset of
(
[n]
2

)
.

1. In the G(n, p) model, each of the possible
(
n
2

)
edges in the random graph on n

vertices turns up with probability p independently;

2. In the G(n,m) model, the m edges in the random graph on n vertices are chosen

uniformly from
(([n]

2 )
m

)
.

We will refer to the first model the density model and the second model the size

model. For most natural questions, for example, the threshold phenomenon we will

talk about, these two models behave very similarly. We can correspondingly choose

the size parameters, i.e., we take m ∼ p
(
n
2

)
and use concentration inequality to convert

from the density model to the size model.

Also in this significant paper [11], the central problem, what is the ‘typical’ struc-

ture in a given stage (i.e. p is equal to a given function p(n) of n) of a random graph,

was proposed by Erdős and Rényi. A ‘typical’ structure means that such a structure

turns up in the random graph G(n, p(n)) with probability tending to 1 as n tends to

∞. In other words, if F is the property containing a ‘typical’ structure, ‘almost all’

G(n, p(n)) has this property. In their study, they found the ‘threshold phenomenon’

for lots of structural properties such as connectedness, containing a given subgraph

and so on. This phenomenon describes the sudden change of the appearance and

disappearance of certain properties.

Though threshold functions were given for many particular properties since 1960,

we didn’t know why a property should have a threshold function until Bollobás and

Thomason [6] showed that every non-trivial (monotone) increasing property has a
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threshold in 1987. A trivial property is one that always holds or never holds. For

an increasing property, a graph has this property whenever one of its subgraphs has.

Many familiar graph properties are increasing properties, for example, a graph is

connected, a graph contains a triangle and so on. There is another interesting question

about the sharpness of the threshold. We refer interested readers to [15, 14, 13].

Calculating the threshold for a particular property can be very difficult such as

the threshold for perfect matchings in hypergraph (known as ‘Shamir’s problem’ and

proved by Johansson, Kahn, and Vu [17] in 2008) and bounded degree spanning tree

in random graphs (proved by Montgomery [22] in 2019). Both of these two proofs are

very difficult (actually, the paper for bounded-degree spanning trees is 71 pages long).

In 2007, Kahn and Kalai [19] proposed their conjecture saying that the threshold is

not far from its natural lower bound—expectation threshold which can imply these

difficult results above. The inspiration of the expectation threshold is from when the

number of copies of some subgraph is expected to be larger than zero. This conjecture

is so difficult and remarkable that Kahn and Kalai write in [19]

‘It would probably be more sensible to conjecture that it is not true.’

In 2010, Talagrand [29] proposed the fractional version of the Kahn-Kalai conjec-

ture which is weaker than the original Kahn-Kalai conjecture. In 2021, Frankston,

Kahn, Narayanan and Park [12] proved this weaker conjecture. Their proof is inspired

by the work on the sunflower conjecture due to Alweiss, Lovett, Wu and Zhang [1].

In 2022, this conjecture was proved by Park and Pham [24] elegantly within 7 pages

which is an excellent breakthrough in random graphs.

This survey effectively introduces the motivation behind the conjecture by pre-

senting various examples, rendering it more natural to understand. Furthermore, the

survey underscores the significance of the conjecture by showing a series of applica-

tions in historically difficult problems.

Overview In chapter 2, we will introduce the threshold phenomenon after some

basic results in Probability Theory and Erdős-Rényi model. In chapter 3, we will give

many inspiring examples preparing for the introduction of the Kahn-Kalai conjecture

in chapter 4. In chapter 4, we will introduce the Kahn-Kalai conjecture and the

weaker but useful result, the fractional Kahn-Kalai conjecture with many applications

to show how powerful these results are. After exhibiting the proof of the Kahn-Kalai

conjecture in chapter 5, we end this survey with some further work and two open

conjectures.
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Chapter 2

Preliminaries

In this chapter, we will formally state notions mentioned in chapter 1 and introduce

some basic and useful techniques and results. First, we introduce results in Probability

Theory such as Markov’s inequality and Chebyshev’s inequality. Then we will show

the relationship between the two models. Finally, we use an example to introduce

the threshold phenomenon and show increasing properties always have a threshold.

2.1 Results in Probability Theory

The first important result is Markov’s inequality which gives an upper bound of the

probability of the event that a non-negative random variable is larger than or equal

to a positive constant. This inequality has many sources and is named after Andrey

Markov.

Theorem 2.1 (Markov’s inequality). Let X be a non-negative random variable and

a be a positive real. The probability

P(X ≥ a) ≤ E[X]

a
.

Proof. Let IX≥a be the indicator of the event that the random variable X is larger

than a, that is

IX≥a =

{
0 if X < a

1 if X ≥ a.

Then we have X ≥ aIX≥a. Take the expectations of the two sides and we have

E[X] ≥ E[aIX≥a] = aP(X ≥ a)

which implies the inequality we want.
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The second result can be implied from Markov’s inequality and it describes the

deviation around the mean of a random variable. It is named after Markov’s teacher,

Pafnuty Chebyshev.

Corollary 2.2 (Chebyshev’s inequality). Let X be a random variable and a be a

positive real. The probability

P(|X − E[X]| ≥ a) ≤ Var[X]

a2
.

Proof. Let Y = (X − E[X])2 and Y is a non-negative random variable. By Markov’s

inequality, the probability

P(|X − E[X]| ≥ a) = P(Y ≥ a2) ≤ E[Y ]

a2
=

Var[X]

a2
.

These two results seem very simple but show that the moments of a random

variable are closely related to its distribution. For some distributions such as Poisson

distribution and Normal distribution, the distribution is uniquely determined by its

finite-order moments. We introduce the following theorem without proof and refer

interested readers to section 30 in [3].

Theorem 2.3 (Method of Moments). Suppose that the distribution of X is deter-

mined by its moments. If there is a sequence of random variables {Xn} such that

lim
n→∞

E[Xr
n] = E[Xr]

for ∀r ∈ Z+, then Xn converges in distribution to X.

Remark 2.4. Since finite-order moments can be written as linear combinations of

binomial moments, the theorem above also shows that the distribution is uniquely

determined by binomial moments.

In random graphs, one of the most important distributions is the binomial distri-

bution. The binomial distribution with parameters n and p, write B(n, p), describes

the number of successes in n independent experiments and the probability of success

for an individual experiment is p. An obvious observation is that the number of edges

in the random graph G(n, p) has a distribution B(
(
n
2

)
, p). By the linearity of expec-

tation, it is easy to get that the mean of B(n, p) is np but the median is not so easy.

Fortunately, it was proved by Kaas and Buhrman [18] that medians are very close to

the mean for binomial distributions.
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Theorem 2.5. Let X be a random variable with distribution B(n, p). Let µ 1
2
be a

median of X which means

P(X ≤ µ 1
2
) ≥ 1

2
and P(X ≥ µ 1

2
) ≥ 1

2
.

Then the mean µ and the median µ 1
2
satisfy

⌊µ⌋ ≤ µ 1
2
≤ ⌈µ⌉.

In particular, the median equals to the mean when np is an integer.

2.2 Models of random graphs

We mention two models of random graphs in the chapter 1 and we restate them

here. A random graph on n vertices (for the sake of convenience, let the vertices set

V = [n]) is a labelled graph.

• In the density model G(n, p), each of the possible
(
n
2

)
edges in the random graph

on n vertices turns up with probability p independently;

• In the size model G(n,m), the m edges in the random graph on n vertices are

chosen uniformly from
(([n]

2 )
m

)
.

In this section, we will show that these two models behave similarly when we take

m ∼ p
(
n
2

)
.

Let |G(n, p)| be the number of edges in G(n, p). The following simple result shows

that the density model G(n, p), conditioned on the event that {|G(n, p)| = m}, is

equivalent to the size model G(n,m).

Theorem 2.6. Let N =
(
n
2

)
. The probability that G(n, p) is a given graph G with m

edges conditioned on the number of edges is 1/
(
N
m

)
.

Proof. Let G be any certain graph on n vertices with m edges. Then we have

P
(
G(n, p) = G

∣∣ |G(n, p)| = m
)

=
P (G(n, p) = G)

P (|G(n, p)| = m)

=
pm(1 − p)N−m(
N
m

)
pm(1 − p)N−m

=

(
N

m

)−1
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As we mentioned above, the core problem in random graphs is what is the typical

structure in a given stage of the random graph. In other words, for a given structure,

when does it turn up with high probability? We use ‘graph has a property’ to refer to

the appearance of a particular structure in the graph. If we view the random graph

G(n, p) as a random variable, then the sample space is the set of all possible graphs on

[n]. For a given structure, some possible graphs have this structure but others don’t.

It follows that when we say that the random graph G(n, p) contains a given structure

we mean that the random graph is one of those graphs containing this structure. For

labelled graphs on [n], a graph is determined uniquely by its edges set. Formally, a

graph property F is a subset of 2([n]
2 ) where

(
[n]
2

)
indicates the set of all possible edges

on vertices set [n].

If the property F such that

A ⊆ B and A ∈ F ⇒ B ∈ F ,

then we call F an increasing property. Increasing properties are quite common, for

example, a graph containing a triangle, a graph having no isolated vertex, and a graph

being connected. So it is natural to focus on increasing properties, and we have the

following results.

First, we will introduce the coupling technique and show an intuitively obvious

fact as an application of the coupling technique. Let p1 ≤ p and p2 be defined by the

following equation

1 − p = (1 − p1)(1 − p2).

Imagine that G is a random graph in which u, v are adjacent if and only if they

are adjacent in G(n, p1) or G(n, p2) where G(n, p1) and G(n, p2) independent random

graphs on the same vertices set [n]. It follows that each possible edge turns up in G

with probability p independently. Then we have

G(n, p) = G(n, p1) ∪G(n, p2)

where G(n, p1) and G(n, p2) are independent. Similarly, in the size model, we have

G(n,m) = G(n,m1) ∪H

where m1 ≤ m and H is a random graph on [n] with m2 = m − m1 edges chosen

uniformly from
(
[n]
2

)
\E (G(n,m1)) . Intuitively, the probability P(G(n, p) has F) in-

creases as p gets larger for increasing property F . By coupling technique, we show

this fact formally.
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Proposition 2.7. Let F be an increasing property. If p1 ≤ p2, then

P ((G(n, p1) has F) ≤ P ((G(n, p2) has F) .

Proof. Let p = p2−p1
1−p1

. It is easy to check that

1 − p2 = (1 − p1)(1 − p).

Let G1, G be independent copies of G(n, p1) and G(n, p) respectively. By the coupling

technique, we have that G2 := G1 ∪ G has a distribution as G(n, p2) and E(G1) ⊆
E(G2). Since F is an increasing property, we have

P (G1 has F) ≤ P (G2 has F) .

Equivalently,

P ((G(n, p1) has F) ≤ P ((G(n, p2) has F) .

Similarly, we have the following result in the size model.

Proposition 2.8. Let F be an increasing property. If m1 ≤ m2, then

P ((G(n,m1) has F) ≤ P ((G(n,m2) has F) .

Recall the theorem 2.6 and let N =
(
n
2

)
. Using the law of total probability, we

have

P (G(n, p) has F) =
N∑
k=0

P (G(n, k) has F)P (|G(n, p)| = k) .

Chebyshev’s inequality shows that a random variable is far from its mean with a

bounded probability. Suppose that Np → ∞ as n → ∞. Recall that E[|G(n, p)|] =

Np and Var [|G(n, p)|] = Np(1 − p), we have the following observation

P
(∣∣|G(n, p)| −Np

∣∣ ≥ 1

2
Np

)
≤ 4Var [|G(n, p)|]

(Np)2

=
4Np(1 − p)

(Np)2
→ 0

as n → ∞ which means the probability concentrates around the mean. For increasing

properties, we can get a better result using the theorem 2.5.

Theorem 2.9. Let F be an increasing property, p ∈ [0, 1] and m = ⌊p
(
n
2

)
⌋, we have

P (G(n, p) has F) ≥ 1

2
P (G(n,m) has F) .
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Proof. Let N =
(
n
2

)
. The probability

P (G(n, p) has F) =
N∑
k=0

P (G(n, k) has F)P (|G(n, p)| = k)

≥
N∑

k=m

P (G(n, k) has F)P (|G(n, p)| = k)

≥ P (G(n,m) has F)P (|G(n, p)| ≥ m)

where the second inequality holds by proposition 2.8. Since |G(n, p)| = B(N, p), by

the theorem 2.5 we have the median µ 1
2

of |G(n, p)| satisfy

⌊Np⌋ ≤ µ 1
2
≤ ⌈Np⌉.

It follows that

P(|G(n, p)| ≥ m) = P(|G(n, p)| ≥ ⌊Np⌋) ≥ P(|G(n, p)| ≥ µ 1
2
) ≥ 1

2
.

Therefore, we have P (G(n, p) has F) ≥ 1
2
P (G(n,m) has F) .

2.3 Threshold phenomenon

In the research of Erdős and Rényi [11, 10], an interesting observation is that the

appearance of some increasing properties is abrupt such as connectedness and con-

taining given subgraph. That is to say, random graphs G(n, p) have a property with

high probability as long as p is slightly larger than some p∗. Typically, we have the

following picture.

0 1
0

1

p

P(
G

(n
,p

)
h

as
F

)

We use a simple example to show this phenomenon. This example is common, we

reference the lecture note by Riordan [28].
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Theorem 2.10. Let p∗ = n− 2
3 and F be the property that G(n, p) contains a K4 as

subgraph.

1. If p/p∗ → ∞ as n → ∞, the the probability P(G(n, p) has F) → 1;

2. If p/p∗ → 0 as n → ∞, the the probability P(G(n, p) has F) → 0.

Proof. Let X be the number of K4s in G(n, p). Let S be a given subset of [n] with

|S| = 4 and AS be the event that S induces a K4 in G(n, p). Let IAS
be the indicator

of the event AS, that is,

IAS
=

{
0 if the event AS does not occur

1 if the event AS occurs.

It follows that X =
∑

S IAS
. The event AS occurs if and only if 6 specific edges are

present. It follows that

P (AS) = p6.

By the linearity of expectation, we have

µ := E [X] =
∑
S

P (AS) =

(
n

4

)
p6 ∼ n4p6

24
. (2.1)

In the case of p/p∗ → 0, the expectation

E [X] = Θ
(
n4p6

)
= Θ

(
n4
(
n− 2

3

)6
(p/p∗)6

)
→ 0

as n → ∞. Thus, by Markov’s inequality, we have that

P (G(n, p) has F) = P (X ≥ 1) ≤ E [X]

1
→ 0

as n → ∞.

In the case of p/p∗ → ∞, notice that E [X] → ∞. But it is not enough to show

that P (X ≥ 1) → 1. We will use Chebyshev’s inequality to show what we want.

First, we consider the second moment of X which will imply Var[X] with E [X] .

Expand the second moment of X and we have

X2 =

(∑
S

IAS

)2

=
∑
S

∑
T

IAS
IAT

.

Since IAS
IAT

= 1 if and only is AS and AT occur, we have

E
[
X2
]

=
∑
S

∑
T

P (AS ∩ AT ) .
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Notice that P (AS ∩ AT ) only depends on the size of S ∩ T . We calculate the contri-

bution in E [X2] of different cases of |S ∩ T | as follows.

|S ∩ T | contribution

0

(
n

4

)
p6
(
n− 4

4

)
p6 ∼ n4p6

24

n4p6

24
= µ2 + o(µ2)

1

(
n

4

)
p6
(

4

1

)(
n− 4

3

)
p6 = Θ(n7p12) = o(µ2)

2

(
n

4

)
p6
(

4

2

)(
n− 4

2

)
p5 = Θ(n6p11) = o(µ2)

3

(
n

4

)
p6
(

4

3

)(
n− 4

1

)
p3 = Θ(n5p9) = o(µ2)

4

(
n

4

)
p6 = µ.

Since

P (G(n, p) doesn’t have F) = P (X = 0) ≤ P
(∣∣X − µ

∣∣ ≥ µ
)
,

we estimate the probability P
(∣∣X − µ

∣∣ ≥ µ
)

by Chebyshev’s inequality,

P
(∣∣X − µ

∣∣ ≥ µ
)
≤ Var [X]

µ2

=
E [X2] − E [X]2

µ2

=
µ2 + o(µ2) + µ− µ2

µ2
→ 0

as n → ∞. It follows that P (G(n, p) has F) → 1 as n → ∞ when p/p∗ → ∞ and

the proof is complete.

Now we formally state the definition of the threshold.

Definition 2.11. Let F be a property of random graphs. A function p∗(n) is called

a threshold function for F if

1. P(G(n, p(n)) has F) → 0 when p(n)
p∗(n)

→ 0 and

2. P(G(n, p(n)) has F) → 1, when p(n)
p∗(n)

→ ∞.

A threshold function is not unique since we can easily get a new one by multiplying

a constant. By the simple example above, we use Markov’s inequality and Cheby-

shev’s inequality which are the most basic and useful methods to get the threshold.

We call them the first moment method and the second moment method.
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Theorem 2.12 (First moment method). Let X be a non-negative integer random

variable. The probability

P(X ≥ 1) ≤ E[X].

Theorem 2.13 (Second moment method). Let X be a non-negative integer random

variable. The probability

P(X = 0) ≤ Var[X]

E[X]2
.

Calculating the expectation of a random variable tends to be easy since its linear-

ity. A function p(n) such that E[X] → 0 gives a natural lower bound of the threshold.

A natural idea is whether the lower bound is exactly the threshold or how far is the

threshold from the lower bound. In later chapters, we will show that although the

threshold can’t be gotten easily just from the expectation, it is not far from this lower

bound provided we are careful about what we are counting.

In addition to what the threshold is, another important problem is when the

threshold exists. In 1987, Bollobás and Thomason [6] showed why non-trivial in-

creasing properties always have a threshold. We end this chapter with this result.

The proof here references [16] by Frieze and Karoński.

Theorem 2.14. If F is a non-trivial increasing property, there is a threshold for

random graphs to have property F .

Proof. Let G1, · · · , Gk be independent copies of G(n, p). Then the graph G =
⋃k

i=1 Gk

is distributed as G(n, 1− (1− p)k). Since 1− (1− p)k ≤ kp, G(n, kp) can be obtained

from G(n, 1 − (1 − p)k) by coupling with G(n, p′) where p′ is such that

(1 − p)k(1 − p′) = 1 − kp.

Notice that G doesn’t have property F implies none of {Gi}ki=1 has property F . It

follows that

P (G(n, kp) doesn’t have F) ≤
k∏

i=1

P (Gi doesn’t have F)

= (P (G(n, p) doesn’t have F))k

Let N =
(
n
2

)
. For each element S in F , the probability of the event that the random

graph G(n, p) is the graph exactly containing these edges is p|S|(1 − p)N−|S|. Since

different elements in F are mutually exclusive, we have

µp(F) := P (G(n, p) has F) =
∑
S∈F

p|S|(1 − p)N−|S|
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which is a polynomial in p. As we show in proposition 2.7, µp(F) increases as p

increases from 0 to 1. For ϵ ∈ [0, 1], let p(ϵ) be defined by µp(ϵ)(F) = ϵ. Let p∗ = p(1
2
)

and ω(n) → ∞ arbitrarily slowly. Without loss of generality, we suppose ω(n) > 0.

We have

P (G(n, ωp∗) doesn’t have F) ≤ (P (G(n, p∗) doesn’t have F))ω =

(
1

2

)ω

→ 0

as n → ∞ and

1

2
= P (G(n, p∗) doesn’t have F) ≤ (P (G(n, p∗/ω) doesn’t have F))ω

which implies that

P (G(n, p∗/ω) doesn’t have F) ≥ 2− 1
ω → 1

as n → ∞. It follows that P (G(n, ωp∗) has F) → 1 and P (G(n, p∗/ω) has F) → 0

as n → ∞. Since that ω(n) → ∞ arbitrarily slowly, p∗ is a threshold for property

F .

Remark 2.15. The value 1
2
of p∗ = p(1

2
) in the proof is not essential. Any constant

strictly between 0 and 1 would work.
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Chapter 3

Examples of threshold

In this chapter, we will give some examples of thresholds. Through these examples,

we want to show that the first moment method provides a natural lower bound of

the threshold easily but in many cases, it is not exactly a threshold. Fortunately, the

threshold seems not far from this lower bound.

The first section will show the threshold concerning a small subgraph with finite

vertices and edges. These cases are relatively easy to analyze.

In the second section, we move our attention to large subgraphs such as spanning

trees, that is, the connectedness of the random graph. This is one of the important

earliest results in random graphs given by Erdős and Rényi [10]. In fact, they prove

that logn
n

is the sharp threshold for connectedness which is stronger than the threshold.

Finally, based on the threshold concerning connectedness, we show another two

results concerning the Hamilton cycles and perfect matchings. In terms of perfect

matchings, due to Erdős and Rényi’s work [9], the threshold was given in 1964. The

threshold for Hamilton cycles is much more difficult and left open until 1976 solved

by Pósa [25]. Since the aim of this chapter is to show some motivations for Kahn

and Kalai to propose their conjecture, we first show the threshold for Hamilton cycles

and deduce the threshold for perfect matchings. Interestingly, it is found that both of

them have similar relations with the lower bound given by the first moment method.

3.1 Small subgraph

Recall the threshold for random graphs containing a K4 is n− 2
3 which is equal to the

lower bound provided by the first moment method. However, this coincidence will

vanish after a tiny change. The discussion here references [28].

Let H be a kite, K4 with an extra edge hanging out. Since K4 is a subgraph of

H, we have that G(n, p) contains a K4 whenever it contains an H. As we do in the
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Figure 3.1: K4 and H

example of K4, for a copy of H, the probability of the event that this copy turns up

in G(n, p) if and only if 7 specific edges are present. In terms of number of copies,

since the number of automorphisms of H is 3!, there are n(n−1)···(n−4)
3!

different copies

of H. It follows that

E [number of copies of H in G(n, p)] =
n(n− 1) · · · (n− 4)

3!
p7.

Using the first moment method, we suppose n− 5
7 is a threshold. Notice that n− 5

7/n− 2
3 =

n− 1
21 → 0 as n → ∞ and we can find some p(n) between n− 5

7 and n− 2
3 such that

p(n)/n− 2
3 → 0 and p(n)/n− 5

7 → ∞

as n → ∞. By the definition of thresholds, we have

P (G(n, p(n)) contains K4) → 0 and P (G(n, p(n)) contains H) → 1

as n → ∞ which is contradictory to the fact that G(n, p) containing H implies G(n, p)

containing K4. Though this example shows the threshold is not always given by the

first moment method, for small subgraphs with finite vertices and edges, the threshold

can be solved by the first and second moment method. Before introducing the result,

we define the edge density of a graph and simplify the second moment method.

Definition 3.1. The edge density d(G) of a graph G is |E(G)|/|V (G)|.

Let {An,i} be a sequence of events and Xn be the number of events which occur.

Taking independence into consideration, we have the following lemma.

Lemma 3.2. Let ∆n =
∑

i

∑
i∼j P(An,i ∩ An,j) where i ∼ j means events An,i and

An,j are dependent and i ̸= j. Let E [Xn] = µn. If ∆n/µ
2
n → 0 and µn → ∞, then we

have P (Xn = 0) → 0 as n → ∞.

14



Proof. By the definition of variance, we have Var[Xn] = E
[
(
∑

i In,i)
2]− (E [

∑
i In,i])

2

where In,i is the indicator of the event An,i. It follows that

Var[Xn] =
∑
i

∑
j

(P(An,i ∩ An,j) − P(An,i)P(An,j))

=
∑
i

(
P(An,i) − P(An,i)

2
)

+
∑
i

∑
i ̸=j

(P(An,i ∩ An,j) − P(An,i)P(An,j))

≤ E[Xn] +
∑
i

∑
i∼j

P(An,i ∩ An,j) = µn + ∆n.

If ∆n

µ2
n
→ 0 and µn → ∞, then we have Var[Xn]

µ2
n

→ 0. By the theorem 2.13, we have

P (Xn = 0) → 0 as n → ∞.

Theorem 3.3. Let H be a graph and let H ′ be one of the subgraphs of H with

maximum edge density. One of thresholds of G(n, p) containing H is p∗ = n
− 1

d(H′) .

Proof. Let e = |E(H)|, v = |V (H)| and e′ = |E(H ′)|, v′ = |V (H ′)|. So we have

d(H ′) = e′

v′
and e′

v′
≥ e

v
. Let X be the number of copies of H in G(n, p). Let {Hi}

be all possible copies of H and {Ai} be the corresponding event that Hi turn up in

G(n, p). The event Ai occurs if and only if specific e edges are present. It follows that

P(Ai) = pe.

By the linearity of expectation, we have

µ := E[X] =
n(n− 1) · · · (n− v + 1)

aut(H)
pe = Θ(nvpe)

where aut(H) is the number of automorphism of H. Notice that events Ai and Aj

are dependent if and only if E(Hi) ∩ E(Hj) ̸= ∅. We have that

∆ =
∑
i

∑
i∼j

P (Ai ∩ Aj) =
∑
i

∑
i∼j

P (Hi ∪Hj ⊆ G(n, p)) .

Let r be the number of vertices in Hi ∩Hj and s be the number of edges in Hi ∩Hj.

Since Hi ∩Hj is also a subgraph of H, we have s
r
≤ e′

v′
. There are 2v− r vertices and

2e− s edges in Hi ∪Hj. For fixed r, s, the contribution of these terms are

Θ(n2v−rp2e−s) = Θ(µ2n−rp−s) = Θ

(
µ2 1

nrp∗s

(
p

p∗

)−s
)
.

Since s
r
≤ e′

v′
and e

v
≤ e′

v′
, we have

nrp∗s = nr−s v′
e′ ≥ 1 and nvp∗e = nv−e v′

e′ ≥ 1.

15



In the case of p/p∗ → ∞ as n → ∞, we have

Θ

(
µ2 1

nrp∗s

(
p

p∗

)−s
)
/µ2 ≤ Θ

((
p

p∗

)−s
)

→ 0 (3.1)

and

µ = Θ(nvpe) = Θ

(
nvp∗e

(
p

p∗

)e)
≥ Θ

((
p

p∗

)e)
→ ∞

as n → ∞. Since H is a graph with finite vertices and edges, the number of different

pairs of r, s is finite. It follows that ∆ = o(µ2) by (3.1). Using the lemma 3.2, we

have

P (X = 0) → 0

as n → ∞ which implies that P(G(n, p) contains H) → 1.

In terms of the case p/p∗ → 0, let X ′ be the number of H ′s in G(n, p). We have

E[X ′] =
n(n− 1) · · · (n− v′ + 1)

aut(H ′)
pe

′
= Θ(nv′pe

′
) = Θ(nv′n−e′ v

′
e′

(
p

p∗

)e′

) → 0

as n → ∞ which implies that P(X ′ ≥ 1) → 0 by Markov’s inequality. Since H ′ is a

subgraph of H, we have

P(G(n, p) contains H) ≤ P(G(n, p) contains H ′) = P(X ′ ≥ 1) → 0.

Therefore, we complete our proof and show that p∗ = n
− 1

d(H′) is a threshold of

G(n, p) containing H.

3.2 Connectedness

Connectedness may be the most basic property of a graph. Since a graph is connected

if and only if it contains a spanning tree, a natural idea to get the threshold for

connectedness is to count the number of spanning trees as we do in the last section.

For a labelled graph on n vertices, there are nn−2 possible spanning trees by the

famous Cayley’s formula and each of them contains n − 1 edges. Let X be the

number of spanning trees in the random graph G(n, p). It is easy to check that

E[X] = nn−2pn−1.

Take p∗ = n−1 and we have E[X] → 0 as n → ∞ which is a lower bound of the

threshold. However, it is too difficult to consider the second moment which leads us

to another idea.
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A component of a graph is a connected subgraph and there is no larger connected

subgraph containing it. A k-component is a component on k vertices. It is obvious

that a graph is connected if and only if there is no k-component with 2 ≤ k < n and

isolated vertices. First, let’s focus on the isolated vertices.

Theorem 3.4. Let F be the property that there is no isolated vertex in the graph.

Let

p =
log n + ω(n)

n
.

The probability

P (G(n, p) has F) =

{
1 if ω(n) → ∞
0 if ω(n) → −∞

where |ω(n)| → ∞ arbitrarily slowly as n → ∞.

Proof. Since |ω(n)| → ∞ arbitrarily slowly, we assume that |ω(n)| = o(log n) without

loss of generality. Let X be the number of isolated vertices in G(n, p). Let Ai be the

event that the vertex i is isolated and we have P(Ai) = (1 − p)n−1. By the linearity

of expectation, we have

E[X] =
∑
i

P(Ai) = n(1 − p)n−1.

Since p → 0 as n → ∞, we use Taylor expansion to have

1 − p = e−p+O(p2).

Using this estimate, we have

E[X] = n(1 − p)n−1 = elogn−pn+p+O(p2n).

Substituting p = logn+ω(n)
n

, we have

E[X] = elogn−pn+p+O(p2n)

= e−ω(n)+o(1)

= (1 + o(1))e−ω(n).

In the case of ω(n) → ∞, we have

P(G(n, p) doesn’t have F) = P(X ≥ 1) ≤ E[X]

1
→ 0

as n → ∞. Equivalently, we have P(G(n, p) has F) → 1 as n → ∞ if ω(n) → ∞.

17



In the case of ω(n) → −∞, we have

µ := E[X] = (1 + o(1))e−ω(n) → ∞.

The second moment of X can be write as E[X2] =
∑

i

∑
j P(Ai ∩ Aj) =

∑
i P(Ai) +∑

i

∑
i ̸=j P(Ai ∩ Aj) and the event Ai ∩ Aj for i ̸= j occurs if and only if all 2n − 4

edges between {i, j} and the other vertices are absent as well as ij. It follows that

P(Ai ∩ Aj) = (1 − p)2n−3

and

E[X2] =
∑
i

P(Ai) +
∑
i ̸=j

P(Ai ∩ Aj)

= µ + µ2 1

1 − p
+ O(µ)

= (1 + o(1))µ2 + o(µ2),

we have Var[X] = E[X2] − E[X]2 = o(µ2). By the theorem 2.13, we have

P(X = 0) → 0

as n → ∞ which implies that P(G(n, p) has F) → 0 as n → ∞.

The threshold can be implied by this result and actually, it shows logn
n

is a sharp

threshold. From the definition of a sharp threshold, it is easy to find that a sharp

threshold is also a threshold.

Definition 3.5. Let F be an increasing property of random graphs. A function p∗(n)

is called a sharp threshold function for F if for ∀ϵ > 0

1. limn→∞ P(G(n, p(n)) has P) = 0 when limn→∞
p(n)
p∗(n)

≤ 1 − ϵ and

2. limn→∞ P(G(n, p(n)) has P) = 1, when limn→∞
p(n)
p∗(n)

≥ 1 + ϵ.

The theorem 3.4 shows the probability of the random graph containing no isolated

vertices when |ω(n)| → ∞. Actually, for |ω(n)| < ∞, we have a finer description,

that is, the distribution of the number of isolated vertices in G(n, p) converges to

Poisson distribution. We maintain X denote the number of isolated vertices and

p = logn+ω(n)
n

. There are two methods to show this result, referencing [16] by Frieze

and Karoński.

The first one uses the method of moments. As we state in theorem 2.3 and re-

mark 2.4, if finite order binomial moments of X tend to the corresponding binomial
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moments of Poisson distribution, then X converges in distribution to Poisson distri-

bution. Since the kth binomial moment of Poisson distribution with parameter e−c is
e−ck

k!
, we will show that

E
[(

X

k

)]
→ e−ck

k!
as n → ∞.

Let Ai denote the event that the vertex i is isolated. As the combinatorial meaning

of binomial coefficients,
(
X
k

)
describes the number of different choices of unordered k

isolated vertices. Then the kth binomial moment of X satisfy

E
[(

X

k

)]
=

∑
1≤i1<···<ik≤n

P

(
k⋂

s=1

Ais

)

=

(
n

k

)
(1 − p)k(n−k)+(k

2)

=
1

k!

n!

(n− k)!
(1 − p)k(n−k)+(k

2)

The second equation comes from the equivalence between the event that given k

vertices are isolated and the event that there is no edge between these k vertices and

the other n − k vertices as well as among these k vertices. By the estimate that

1 − p = e−p+O(p2) and Stirling formula, we have the follow estimate

n!

(n− k)!
(1 − p)k(n−k)+(k

2) ∼
√

n

n− k

(n
e

)n( e

n− k

)n−k

ek(−p+O(p2))(n−k+ k−1
2

)

∼
(n
e

)k (
1 +

k

n− k

)n−k
k

k (
n−1e−ω(n)

)k
∼ e−ck

and E
[(

X
k

)]
→ e−ck

k!
as n → ∞. It follows that X converges to Poisson distribution

with parameter e−c by the method of moments.

The second method shows the distribution of X directly. Before our proof, we

first give some lemmas.

A Boolean function is a function of n variables, each of which is in {0, 1} and only

has two values in {0, 1}. Let A1, · · · , An be events and IAi
s be the indicators of Ais.

Lemma 3.6. Let A1, · · · , An be events. Let f1, · · · , fk be Boolean polynomials in n

variables and α1, · · ·αk be real constants. If

E

[
k∑

i=1

αifi(IA1 , · · · , IAn)

]
≥ 0 (3.2)

whenever P(Ai) = 0 or 1 for ∀i, then (3.2) holds for every choice of events.
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Proof. First, the event {fi(IA1 , · · · , IAn) = 1} can be written as

f−1
i ({1}) =

⊔
S⊆I

((⋂
i∈S

Ai

)
∩

(⋂
i/∈S

AC
i

))

for some I ⊆ 2[n]. It follows that

P(fi(IA1 , · · · , IAn) = 1) =
∑
S⊆I

P

((⋂
i∈S

Ai

)
∩

(⋂
i/∈S

AC
i

))

and we can rewrite the left side of (3.2) as follows

E

[
k∑

i=1

αifi(IA1 , · · · , IAn)

]
=

k∑
i=1

αi

∑
S⊆I

P

((⋂
i∈S

Ai

)
∩

(⋂
i/∈S

AC
i

))

=
∑
S⊆[n]

βSP

((⋂
i∈S

Ai

)
∩

(⋂
i/∈S

AC
i

))
. (3.3)

Since we suppose (3.3) is non-negative whenever P(Ai) = 0 or 1, we take Ai = Ω (Ω

is the sample space) for i ∈ T and Ai = ∅ for i /∈ T for T ⊆ [n]. We have

∑
S⊆[n]

βSP

((⋂
i∈S

Ai

)
∩

(⋂
i/∈S

AC
i

))
= βT ≥ 0.

Therefore, we have βT ≥ 0 for ∀T ⊆ [n] which implies that

E

[
k∑

i=1

αifi(IA1 , · · · , IAn)

]
≥ 0

in general.

This lemma was proposed by Rényi [27] in 1958 and the principle of inclusion-

exclusion can be implied from this lemma. Using this lemma, we prove the following

result.

Lemma 3.7. Let A1, · · · , An be events in the sample space Ω and X be the number

of events among {Ai} that occur. Let Bk = E
[(

X
k

)]
. Then we have

P(X = j)


≤
∑s

k=j(−1)k−j
(
k
j

)
Bk if s− j is even

≥
∑s

k=j(−1)k−j
(
k
j

)
Bk if s− j is odd

=
∑s

k=j(−1)k−j
(
k
j

)
Bk if s = n.

(3.4)
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Proof. To use the lemma 3.6, we just need to check the cases when P(Ai) = 0 or 1

for ∀i ∈ [n]. Suppose that exactly ℓ given events occur with probability 1 and the

others never occur for 1 ≤ ℓ ≤ n. We have Bk =
(
ℓ
k

)
. It follows that

s∑
k=j

(−1)k−j

(
k

j

)
Bk =

s∑
k=j

(−1)k−j

(
k

j

)(
ℓ

k

)

=
s∑

k=j

(−1)k−j k!ℓ!

j!(k − j)!k!(ℓ− k)!

=
s∑

k=j

(−1)k−j ℓ!

j!(ℓ− j)!

(ℓ− j)!

(k − j)!(ℓ− k)!

=

(
ℓ

j

) s∑
k=j

(−1)k−j

(
ℓ− j

k − j

)
. (3.5)

If ℓ < j, we have
(
ℓ−j
k−j

)
= 0 which equals to P(X = j) = 0. In terms of ℓ = j, we

have (3.5) only have the first term
(
j
j

)
(−1)j−j

(
j−j
j−j

)
= 1 non-zero and P(X = j) = 1.

Finally, if j < ℓ ≤ n, we have P(X = j) = 0 and

s∑
k=j

(−1)k−j

(
ℓ− j

k − j

)
=

s−j∑
t=0

(−1)t
(
ℓ− j

t

)

=

(
ℓ− j

0

)
+

s−j∑
t=1

(−1)t
((

ℓ− j − 1

t

)
+

(
ℓ− j − 1

t− 1

))
= (−1)s−j

(
ℓ− j − 1

s− j

)
.

The second equality uses the simple fact that
(
ℓ−j
t

)
=
(
ℓ−j−1

t

)
+
(
ℓ−j−1
t−1

)
. Therefore,

we have shown that (3.4) holds for P(Ai) = 0 or 1. By lemma 3.6, we have it holds

in general.

This lemma provides us with an upper bound and a lower bound of the probability

P(X = j). Then squeeze theorem shows what we want.

Theorem 3.8. Let X be the number of isolated vertices in G(n, p) with p = logn+ω(n)
n

and ω(n) → c < ∞ as n → ∞. The probability

P(X = j) → e−e−c e−cj

j!

as n → ∞ which implies that X converges in distribution to the Poisson distribution.
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Proof. As we mentioned above, we have Bk = E
[(

X
k

)]
→ e−ck

k!
as n → ∞. By

lemma 3.7, for ℓ ≥ 0, just consider

j+2ℓ+1∑
k=j

(−1)k−j

(
k

j

)
e−ck

k!
≤ lim

n→∞
P(X = j) ≤

j+2ℓ∑
k=j

(−1)k−j

(
k

j

)
e−ck

k!
.

It is easy to check that

j+m∑
k=j

(−1)k−j

(
k

j

)
e−ck

k!
=

m∑
t=0

(−1)t
e−c(j+t)

j!t!

=
e−cj

j!

m∑
t=0

(−1)t
e−ct

t!

→ e−cj

j!
e−e−c

as m → ∞ which implies that P(X = j) → e−e−c e−cj

j!
.

Now we return to our starting problem when the random graph G(n, p) becomes

connected. Amazingly, it is found that random graphs become connected as long as

isolated vertices vanish.

Theorem 3.9. Let p = logn+ω(n)
n

. The probability

P (G(n, p) is connected) →


1 if ω(n) → ∞
e−e−c

if ω(n) → c < ∞
0 if ω(n) → −∞

as n → ∞.

Proof. Suppose P (G(n, p) is connected) → e−e−c
when ω(n) → c < ∞. Since con-

nectedness is an increasing property, we have P (G(n, p) is connected) → 1 when

ω(n) → ∞ and P (G(n, p) is connected) → 0 when ω(n) → −∞.

Therefore, we only need to show the case of ω(n) → c < ∞. Without loss of

generality, suppose |ω(n)| ≤ log n for n ≥ 1. It is known that a graph is connected if

and only if it has no k-components for 2 ≤ k < n as well as isolated vertices. Let Xk

be the number of k-component. Since it is impossible that there is no k-component

for 2 ≤ k ≤ ⌊n
2
⌋ nor isolated vertices while ℓ-component exists for ℓ > ⌊n

2
⌋, we only

need to consider k-component for k ≤ ⌊n
2
⌋ and isolated vertices. For the sake of

convenience, we view isolated vertices as 1-components.

First, we consider k-component for 2 ≤ k ≤ ⌊n
2
⌋. Let Xk be the number of k-

component. Let S be a set of vertices with k elements and AS be the event that S
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induces a k-component. Given k vertices, the event that they induce a k-component

means there is a spanning tree on these vertices meanwhile there is no edge between

these k vertices and the others. By Cayley’s formula, we have the union bound of the

probability

P (AS) ≤ (1 − p)k(n−k)kk−2pk−1.

Then we have

E [Xk] ≤
(
n

k

)
(1 − p)k(n−k)kk−2pk−1.

By the following estimates1(
n

k

)
≤
(en
k

)k
1 − x ≤ e−x,

we have

E [Xk] ≤
(en
k

)k
e−pk(n−k)kk−2pk−1

=
1

k2

n

log n + ω(n)

(
en

k
k

log n + ω(n)

n
e−

logn+ω(n)
n

(n−k)

)k

=
1

k2
O

(
n

log n

)(
O(log n)(1 + o(1))

1

n
ek

logn
n

)k

.

When n is large enough, and 2 ≤ k ≤ 5, we have

1

k2
O

(
n

log n

)(
O(log n)(1 + o(1))

1

n
ek

logn
n

)k

= O

(
n

log n

)(
O(log n)

1

n

)k

= O(n log n)
1

n2

≪ n− 1
2 .

In terms of 6 ≤ k ≤ ⌊n
2
⌋, we have

1

k2
O

(
n

log n

)(
O(log n)(1 + o(1))

1

n
ek

logn
n

)k

= O

(
n

log n

)(
O(log n)

1

n

√
n

)k

= O
(
n(log n)5

)
n−3

≪ n− 3
2 .

Combining the above, we have

⌊n
2
⌋∑

k=2

E [Xk] ≪ 4 · n− 1
2 +

n

2
n− 3

2 = Θ(n− 1
2 ) → 0

1the first one is the standard upper bound for binomial coefficients
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as n → ∞. Then, by Markov’s inequality, we have

P

 ⌊n
2
⌋∑

k=2

Xk ≥ 1

 ≤
∑⌊n

2
⌋

k=2 E [Xk]

1
→ 0

as n → ∞.

Recall that

P (G(n, p) is connected) = P

⌊n
2
⌋⋂

k=1

{G(n, p) has no k-component}

 .

Equivalently, the probability

P (G(n, p) is not connected) = P

⌊n
2
⌋⋃

k=1

{Xk ≥ 1}


≤ P (X1 ≥ 1) + P

 ⌊n
2
⌋∑

k=2

Xk ≥ 1


= P (X1 ≥ 1) + o(1).

Since P (G(n, p) is not connected) ≥ P (X1 ≥ 1), we have

P (G(n, p) is not connected) → P (X1 ≥ 1)

as n → ∞. Equivalently, we have

P (G(n, p) is connected) → P (X1 = 0) .

By theorem 3.8, we have

P (X1 = 0) → e−e−c

as n → ∞ when p = logn+ω(n)
n

with ω(n) → c < ∞ and our proof completes.

Theorem 3.10. Let F be the property that the random graph is connected. Then

p∗ = logn
n

is a threshold for F .

3.3 Hamilton cycles and perfect matchings

A Hamiltonian cycle is a cycle that passes each vertex exactly once. A graph is

Hamiltonian if it contains a Hamilton cycle. The threshold concerning Hamilton

cycles was first given by Pósa [25]. For a cycle on n labelled vertices, we can get 2n
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different permutations by different choices of the first elements and the direction. It

follows that there are n!
2n

= (n−1)!
2

possible Hamilton cycles in a graph on [n]. Let X

be the number of Hamilton cycles in the random graph G(n, p). By the first moment

method, we get

E[X] =
(n− 1)!

2
pn

and it follows that n−1 is a lower bound of the threshold. It is obvious that n−1 is

not a threshold since a Hamilton cycle in a graph implies that the graph is connected

and n−1 is much less than the threshold for connectedness.

Pósa provided an observation of the longest path in graphs. Let P be one of the

longest paths in graph G on [n] with end vertices u, v. We also use P to denote the

vertices set or edges set of the path if there is no ambiguity. Since P is the longest

path in G, the end vertices have no neighbourhood in [n]\P . If there is some x ∈ P

u vx

y

Figure 3.2: Path P

such that xv is an edge in G, we have a transformation to get a new path Puy like

fig. 3.2 to fig. 3.3. Notice that u is the common end vertices of P and Puy and P also

can be gotten from Puy by a similar transformation. Allowing transformation several

u vx

y

Figure 3.3: Path Puy

times successively, let A be the set of vertices a such that there is a path Pua from u

to a can be obtained from P by transformation with common end vertex u. Let B

25



be the set of vertices such that they are different from u or any vertices in A and are

not adjacent to any vertex in A on the original path P . Thus all vertices in [n]\P are

in B. We have the following result.

Lemma 3.11. There is no edge between A and B.

Proof. For ∀b ∈ [n]\P , suppose to the contrast that there is an a ∈ A such that a, b

are connected by an edge in G. It follows that there is a path Pua from u to a that

can be prolonged by adding the new edge ab which is contradictory to the assumption

that P is one of the longest paths.

For ∀b ∈ P ∩ B, we will show that if b is adjacent to some a ∈ A, then there

is a ã ∈ A such that ãb ∈ P . Suppose to the contrast that α, β are neighbors of b

on P with α, β /∈ A and b is adjacent to a ∈ A. Consider the path Pua from u to a

(since a ∈ A, we can always obtain Pua from P by a series of transformation). Let

{s, t} be the neighbours of b on Pua. We have {s, t} = {α, β}, otherwise bα, or bβ is

deleted by one transformation which implies that one of α, β, b belongs to A which

is a contradiction. Since {s, t} = {α, β} and b is adjacent to a, it follows that one of

{α, β} belongs to A by a transformation from Pua which is also a contradiction.

Therefore, there is no edge between A and B.

Since for each a ∈ A, a has no more than two neighbours on the path P , there

are at most 2|A| + |A| + 1 elements not in B. It follows that

|B| ≥ n− 3|A| − 1.

Through the longest path, we can construct such a structure in a graph that there

are two disjoint sets of vertices and there are no edges between them. In the random

graph G
(
n, c logn

n

)
, such structures turn up with low probability if the size of one set

is small and c is large enough.

Lemma 3.12. Let p = c logn
n

. In the random graph G(n, p), the probability that there

are two disjoint nonempty sets of vertices S, T with |S| = k ≤ ⌊n
4
⌋ and |T | = n−3k−1

such that there are no edges between S and T tends to 0 as n → ∞ when c is large

enough.

Proof. For 1 ≤ k ≤ ⌊n
4
⌋, let ES,T ;k be the event that for given two disjoint sets of

vertices S, T with |S| = k and |T | = n− 3k− 1, there are no edges between S and T .

The event occurs if and only if the specific k(n− 3k− 1) edges are absent. It follows

that

P(ES,T ;k) = (1 − p)k(n−3k−1).
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Let Xk be the number of different pairs S and T such that the event ES,T ;k occur and

the expectation of Xk

E [Xk] =

(
n

k

)(
n− k

n− 3k − 1

)
(1 − p)k(n−3k−1).

By the estimate 1 − x ≤ e−x, we have(
n

k

)(
n− k

n− 3k − 1

)
(1 − p)k(n−3k−1) ≤

(
n

k

)(
n

2k + 1

)
e−pk(n−3k−1)

≤ n3k+1e−
c logn

n
(n−3k−1)k

≤
(
n4n− c

5

)k
.

Set c = 30, and we have E [Xk] ≤ O(n−2). Let E be the event that for some 1 ≤ k ≤
⌊n
4
⌋, there are two disjoint sets of vertices S, T with |S| = k and |T | = n − 3k − 1

such that there are no edges between S and T . It follows that

P(E) = P

⌊n
4
⌋⋃

k=1

{Xk ≥ 1}

 ≤
⌊n
4
⌋∑

k=1

P(Xk ≥ 1).

By Markov’s inequality, we have that

⌊n
4
⌋∑

k=1

P(Xk ≥ 1) ≤
∑⌊n

4
⌋

k=1 E [Xk]

1
≤ n

4
n−2 → 0

as n → ∞ and our proof complete.

By this lemma, we will show there is a Hamilton path in G
(
n, c logn

n

)
with high

probability when c is large enough.

Theorem 3.13. Let p = c logn
n

with c large enough. In the random graph G(n, p), the

probability that there is a Hamilton path tends to 1 as n → ∞.

Proof. We define events as follows

• E : for some 1 ≤ k ≤ ⌊n
4
⌋, there exist two disjoint sets of vertices S, T with

|S| = k and |T | = n− 3k − 1 such that there are no edges between S and T ;

• Lx: for given vertex x, any longest path in G(n, p) passes through x.

We use A to denote the complement of the event A. Suppose Lx occurs, that is, there

exists a longest path on G that doesn’t pass x. Let’s consider one of the longest paths

of G in G − x and call it P . We define the vertices set A,B as we state above. If
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|A| ≤ ⌊n
4
⌋, we have |B| ≥ n− 3k− 1 which implies the event E occurs. In the case of

|A| > ⌊n
4
⌋, we notice that x isn’t adjacent to any a ∈ A otherwise P can be prolonged.

The possibility

P (x isn’t adjacent to any a ∈ A) ≤
(

1 − c log n

n

)n
4

≤ e−
n
4

c logn
n

= n− c
4 .

It follows that P
(
Lx ∩ E

)
≤ n− c

4 which implies that P
(⋃

x(Lx ∩ E)
)
≤ n · n− c

4 . By

the lemma 3.12, the probability of event E is o(1) when c is large enough. It is easy

to check that

P

(⋃
x

Lx

)
= P

(⋃
x

Lx ∩ E

)
+ P

(⋃
x

Lx ∩ E

)

≤ P

(⋃
x

(Lx ∩ E)

)
+ P (E)

≤ n− c
4
+1 + o(1) → 0

as n → ∞ for large c which implies that

P

(⋂
x

Lx

)
→ 1

as n → ∞. Equivalently, the longest path in G(n, p) passes every vertex with high

probability which means there is a Hamilton path in G(n, p) with high probability.

Finally, we use the coupling technique and show that there is a Hamilton cycle

with high probability.

Theorem 3.14. Let p = C logn
n

with C large enough. In the random graph G(n, p),

the probability that there is a Hamilton cycle tends to 1 as n → ∞.

Proof. Let p1 = c logn
n

with c large enough and p2 = logn
n

. Let G1, G2 are independent

copies of G(n, p1), G(n, p2) respectively. Let G be the graph obtained from G1 by

coupling G2. We define events as follows

• E : for some 1 ≤ k ≤ ⌊n
4
⌋, there exist two disjoint sets of vertices S, T with

|S| = k and |T | = n− 3k − 1 such that there are no edges between S and T in

G1;

28



• M: the random graph G1 contains a Hamilton path;

• H: the random graph G contains a Hamilton cycle.

Suppose M occurs. Let P be a Hamilton path in G1. As stated above, we have a

fixed end vertex u and two vertices sets A,B such that there are no edges between A

and B. If |A| ≤ ⌊n
4
⌋, then the event E occurs. In terms of |A| > ⌊n

4
⌋, if there is no

Hamilton cycle in G, then there are no edges between u and A in G2. The probability

of this event is less than (
1 − log n

n

)n
4

≤ e−
n
4

logn
n ≤ n− 1

4 .

Using the law of total probability, we have

P
(
H
)

= P
(
H ∩M

)
+ P

(
H ∩M

)
≤ P

(
H ∩M

)
+ P

(
M
)

= P
(
H ∩M∩ E

)
+ P

(
H ∩M∩ E

)
+ P

(
M
)

≤ P
(
H ∩M∩ E

)
+ P (E) + P

(
M
)
.

By the theorem 3.13 and lemma 3.12, we have

P
(
H ∩M∩ E

)
+ P (E) + P

(
M
)
≤ n− 1

4 + o(1) + o(1) → 0

as n → ∞ when c is large enough. It follows that P (H) → 1 as n → ∞. Notice that(
1 − c log n

n

)(
1 − log n

n

)
= 1 − (c + 1)

log n

n
+ c

(
log n

n

)2

≥ 1 − (c + 1)
log n

n
.

The random graph G has a distribution as G(n, p′) with p′ ≤ (c+1) logn
n

. Take C = c+1

and p = C logn
n

. We have

P (G (n, p) has a Hamilton cycle) ≥ P (G(n, p′) has a Hamilton cycle) → 1

as n → ∞.

Recall that the threshold for the property that there is no isolated vertex in

G(n, p) is logn
n

. Since a random graph containing a Hamilton cycle can imply that it

has no isolated vertex, we have a lower bound of the threshold for the Hamilton cycle
logn
n

. As we show above, G(n, C logn
n

) contains a Hamilton cycle with high probability.

Combining them, it follows that logn
n

is a threshold for the Hamilton cycle.
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Theorem 3.15. Let F be the property that the random graph contains a Hamilton

cycle. One of thresholds for F is logn
n

.

After Pósa proved this result, Komlós and Szemerédi showed that the sharp thresh-

old for the existence of Hamilton cycles is logn+log logn
n

in [21]. Bollobás [4] improved

this to a hitting time result. If we add edges one by one then with probability tending

to 1 the graph becomes Hamiltonian at exactly the point when the minimum degree

becomes at least 2.

Notice that the existence of a Hamilton cycle implies the existence of a perfect

matching for graphs on even vertices. Meanwhile, a perfect matching implies that

there is no isolated vertex. We can get the threshold for perfect matchings directly.

Theorem 3.16. Let F be the property that the random graph contains a perfect

matching. One of thresholds for F is logn
n

.

This result was proven first by Erdős and Rényi in [9]. Actually, they proved

that logn
n

is a sharp threshold. Bollobás and Frieze improved their work and we refer

interested readers to [5].

Interestingly, if we try to use the first moment method to consider the threshold

for the existence of perfect matchings, we will find that n−1 is a natural lower bound

since there are n!
2n/2 n

2
!

copies of perfect matchings and each of them contains exactly
n
2

edges. Recall the examples of connectedness and Hamilton cycles. All of them

show that there is just a logarithmic gap between the lower bound and the threshold.

These examples motivated Kahn and Kalai to propose their conjecture.
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Chapter 4

Kahn-Kalai Conjecture

In this chapter, we will introduce the Kahn-Kalai conjecture which gives an easy

but good estimate of the thresholds for increasing properties. As we mentioned in

the last chapter, the first moment method provides a lower bound of the threshold.

However, for the upper bound, there is no good estimate until 2007. Kahn and

Kalai [19] proposed their conjecture saying the upper bound is not far from the

trivial lower bound. Park and Pham [24] proved this conjecture in 2022. Before

that, Frankston, Kahn, Narayanan and Park [12] proved a weaker theorem in 2021

called the fractional Kahn-Kalai conjecture which has many significant applications.

This conjecture was modified by Talagrand [29]. The proofs of these two conjectures

are similar by iteration. Park and Pham introduced a technical notion, minimum

fragment, which enables them to prove the Kahn-Kalai conjecture elegantly. This

technique can also be applied in [12] to simplify the proof.

We will introduce the Kahn-Kalai conjecture including the fractional version con-

jecture with applications and leave detailed proof to the next chapter. The applica-

tions reference [16] by Frieze and Karoński.

4.1 Kahn-Kalai Conjecture

Recall that the lower bound of the threshold for the existence of spanning trees,

Hamilton cycles, and perfect matchings provided by the first moment method are all

at least n−1. Meanwhile, they have the same threshold logn
n

. All of them show that

there is just a logarithmic gap between the lower bound and the threshold. These

examples are part of the motivations for Kahn and Kalai to propose their conjecture.

Now we state this conjecture formally.

As we mentioned above, a graph property is a subset of the power set 2([n]
2 ).

Generally, let X be the ground set and a non-trivial increasing property F is a subset
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of 2X such that

A ⊆ B and A ∈ F ⇒ B ∈ F

and F ̸= 2X , ∅. We use Xp to denote the random subset of X and each element of X

is contained in Xp with probability p independently for p ∈ [0, 1]. Correspondingly,

Xm is a uniform m-element subset of X for m ≤ |X|. If the random subset has the

property F , we write Xp ∈ F or Xm ∈ F . Let µp be the product measure on 2X

given by

µp(S) = p|S|(1 − p)|X\S|.

Different elements in F are mutually exclusive, so we have

P(Xp ∈ F) =
∑
S∈F

P(Xp = S) =
∑
S∈F

p|S|(1 − p)|X\S|.

Let µp(F) =
∑

S∈F p|S|(1 − p)|X\S|. Similar to the proposition 2.7, we have µp(F)

increases as p increases.

Recall that the threshold is not unique in the original definition. The proof of

theorem 2.14 offered us a insight that ∀ϵ ∈ (0, 1), p(ϵ) defined by

P(G(n, p(ϵ)) has F) = ϵ

is a threshold. By this observation, we redefine the threshold uniquely as follows.

Definition 4.1. Let F be a non-trivial increasing property. The function pc(F) is

the threshold for F if
1

2
= µpc(F)(F).

Recall that the first moment method provides a lower bound in chapter 3. Espe-

cially motivated by the examples 2.10 and 3.3, we write this lower bound formally.

Definition 4.2 (expectation threshold in graph). Let H be a subgraph of the com-

plete graph Kn. The expectation threshold for the event that G(n, p) contains H as

a subgraph is defined by the following equation

pE(H) = min{p : E [number of H ′ in G(n, p)] ≥ 1

2
1 ∀H ′ ⊆ H}.

This definition has a clear meaning and we can rewrite it as

pE(H) = max{p : E [number of H ′ in G(n, p)] ≤ 1

2
∃H ′ ⊆ H}.

1we use 1
2 here to keep the definition compatible with abstract expectation thrshold
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Since E [number of H ′ in G(n, p)] =
∑

copies of H′ p|E(H′)|, Kahn and Kalai generalise

this concept into more abstract settings in [19]. Let G be a subset of 2X and if

F ⊆ ⟨G⟩ :=
⋃
S∈G

{T : T ⊇ S},

we say that G is a cover of F . It is easy to find that the set of all copies of H ′ is a

cover of the property that G(n, p) contains H as a subgraph. Following [29], we say

F is p-small if there is a cover G of F such that∑
S∈G

p|S| ≤ 1

2
.

Definition 4.3 (abstract expectation threshold). q(F) is the expectation threshold

of F if it is the maximum p such that F is p-small.

It is easy to check that q(F) is a lower bound of pc(F). We refer interested readers

to the proof of the proposition 4.8.

Kahn and Kalai conjectured that there is a universal constant K such that

pc(F) ≤ Kq(F) log |X|.

In Park and Pham’s proof, they slightly improve this result. Let ℓ1(F) be the maxi-

mum size of the minimal element of F and ℓ(F) = max{2, ℓ1(F)}.

Theorem 4.4 (Kahn-Kalai Conjecture). There is a universal constant K such that

for every set X and non-trivial increasing property F ⊆ 2X ,

pc(F) ≤ Kq(F) log ℓ(F).

In Park and Pham’s proof, they first reduced the Kahn-Kalai conjecture to the

following theorem 4.5. Let H be a subset of 2X . We say H is ℓ-bounded if the size of

any element in H is no more than ℓ.

Theorem 4.5. Let ℓ ≥ 2. There is a universal constant L such that for any nonempty

ℓ-bounded subset H of 2X that is not p-small, a uniformly random ((Lp log ℓ)|X|)-element

subset of X belongs to ⟨H⟩ with probability tending to 1 as ℓ → ∞.

Starting from this theorem, let H be the set of the minimal elements in property F .

Then we have ⟨H⟩ = F and by Chebyshev’s inequality, we can get the theorem 4.4.

We leave the proof of reduction to the next chapter. This theorem is not easy to

apply, since it is not easy to show a subset not p-small. We introduce the following

fractional Kahn-Kalai conjecture which is convenient to apply.
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4.2 Fractional Kanh-Kalai Conjecture

The remarkable breakthrough before Park and Pham’s proof is the fractional version

of the Kahn-Kalai conjecture. Frankston, Kahn, Narayanan and Park gave their proof

with many applications in [12]. This conjecture was proposed by Talagrand [29] and he

introduced the fractional expectation threshold by relaxing notion p-small to weakly

p-small as follows.

For an increasing property F in X, we say F is weakly p-small if there is a

g : 2X → [0, 1] such that

•
∑

S⊆T g(S) ≥ 1 ∀T ∈ F and,

•
∑

S⊆X g(S)p|S| ≤ 1
2
.

Definition 4.6. qf (F) is the fractional expectation-threshold of F if it is the maxi-

mum p such that F is weakly p-small.

Theorem 4.7 (Fractional Kahn-Kalai Conjecture). There is a universal constant K

such that for every set X and non-trivial increasing property F ⊆ 2X ,

pc(F) ≤ Kqf (F) log ℓ(F).

The following proposition shows that the fractional Kahn-Kalai conjecture can be

implied from the Kahn-Kalai conjecture.

Proposition 4.8. For every finite set X and non-trivial increasing property F in X,

we have

q(F) ≤ qf (F) ≤ pc(F).

Proof. To show the first inequality right, we just need to show that if F is p-small,

then F is weakly p-small. Supposing that F is p-small, there is a G ⊆ 2X such that

F ⊆ ⟨G⟩ and ∑
S∈G

p|S| ≤ 1

2
.

Let g : 2X → [0, 1] be the function as follows

g(S) =

{
1 if S ∈ G
0 if S /∈ G.

Since G is a cover of F , for each T ∈ F , there is a S ∈ G such that S ⊆ T . Thus, we

have ∑
S⊆T

g(S) ≥ 1 ∀T ∈ F .
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Meanwhile, we have ∑
S⊆X

g(S)p|S| =
∑
S∈G

p|S| ≤ 1

2

which shows that F is weakly p-small.

In terms of the second inequality, suppose that F is weakly p-small and we have

µp(F) =
∑
T∈F

µp(T ) ≤
∑
T∈F

µp(T )
∑
S⊆T

g(S)

≤
∑
T⊆X

µp(T )
∑
S⊆T

g(S)

=
∑
S⊆X

g(S)
∑
S⊆T

µp(T ) =
∑
S⊆X

g(S)p|S| ≤ 1

2

which implies that qf (F) ≤ pc(F).

Talagrand also conjectured that every weakly p-small F is (p/K )-small for some

universal constant K which would serve as a bridge to the Kahn-Kalai conjecture

from the fractional version of it. Unfortunately, this conjecture hasn’t been solved

yet though the Kahn-Kalai Ccnjecture has been proven.

Weakly p-small offers us an important property about spread. We say a proba-

bility measure ν on 2X is q-spread if

ν(⟨S⟩) ≤ q|S| ∀ S ⊆ X.

Meanwhile, we say a subset H of 2X is q-spread if

|H ∩ ⟨S⟩ | ≤ q|S||H| ∀ S ⊆ X.

It is easy to check that H is q-spread if and only if the uniform measure on H is

q-spread. As Talagrand showed, the following proposition links the notions of weakly

p-small and spread.

Proposition 4.9. If an increasing property F in X is not weakly p-small, there is

a (2p)-spread probability measure on 2X supported on F .

From a (2p)-spread probability measure supported on F , we can get a (2p)-spread

measure on G which is the set of minimal elements of F (just transfer the weight of

S ∈ F to the minimal element T ⊆ S). We can relax the (2p)-spread measure to

(2p + ϵ)-spread measure to make it take values in Q where ϵ > 0 can be arbitrarily

small. Finally, we can get a uniform (2p + ϵ)-spread measure on H whose elements
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are copies of elements of G (allowing multi-element) which implies that H is (2p+ ϵ)-

spread.

Similar to theorem 4.5 for the Kahn-Kalai conjecture, theorem 4.7 is reduced to

the following theorem which is more convenient to apply.

Theorem 4.10. There is a universal constant L such that for any nonempty ℓ-

bounded and p-spread subset H of 2X , a uniformly random ((Lp log ℓ)|X|)-element

subset of X belongs to ⟨H⟩ with probability 1 − oℓ→∞.

Now we apply this theorem to show some results. We will begin with Hamilton cy-

cles and perfect matchings and then generalise them to hypergraphs. Finally, we will

show a result about bounded-degree spanning trees which is very difficult historically.

Perfect matchings in graphs: Recall the example of perfect matchings. For a

graph on n vertices, suppose 2 | n. There are n!
n
2
!2

n
2

possible perfect matchings. Let

H be the subset of 2([n]
2 ) and each of its elements exactly corresponds to a perfect

matching. The size of each elements in H is n
2

and we say H is n
2
-uniform which

implies that H is n
2
-bounded. We will show that H is C

n
-spread for some large C.

Recall Stirling’s approximation

√
2πn

(n
e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(n
e

)n
e

1
12n .

For ∀S ⊆ X with |S| = s, we have

|H ∩ ⟨S⟩ |
|H|

≤
n
2
!2

n
2

n!

(n− 2s)!(
n
2
− s
)
!2n/2−s

≤ e

√
2πn/2√
2πn

(n/2e)n/22n/2

(n/e)n

√
2π(n− 2s)√
2π(n/2 − s)

((n− 2s)/e)n−2s

((n− 2s)/2e)n/2−s2n/2−s

≤ e

(
e

n− 2s

)s

≤
(
C

n

)s

.

Notice that
(
C
n

log n
2

) (
n
2

)
≤ L′n log n for some large L′. Using the theorem 4.10, there

exists a constant L such that a (Ln log n)-element subset uniformly chosen from
(
[n]
2

)
corresponds to a graph containing a perfect matching with high probability. As we

mentioned above, this result was first proved by Erdős and Rényi in [9].
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Shamir’s problem: This problem asks when the random hypergraph has a per-

fect matching. The model of random hypergraphs is similar to random graphs. A

hypergraph is k-uniform if each edge of the hypergraph consists of k vertices. For

a k-uniform random hypergraph on n vertices (for the sake of convenience, we say

the vertices set [n]), each possible edge in
(
[n]
k

)
turns up with probability p indepen-

dently. We use H(n, p; k) to denote such a random hypergraph. It is necessary to

suppose k | n to have perfect matchings. Let r = n
k

and H be the subset of 2X where

X =
(
[n]
k

)
and each of its elements corresponds to a perfect matching in the k-uniform

hypergraph. Since each perfect matching corresponds to a partition that divides the

n vertices into r disjoint k-element parts, there are n!
r!(k!)r

elements in H and H is

r-uniform. To apply theorem 4.10, we show that there is a constant C large enough

such that H is Cn−(k−1)-spread. For ∀S ⊆ X with |S| = s, using Stirling’s formula

we have

|H ∩ ⟨S⟩ |
|H|

=
r!(k!)r

n!

(n− sk)!

(r − s)!(k!)r−s

≤ e

√
2πn/k√
2πn

(n/ek)n/k(k!)n/k

(n/e)n

√
2π(n− sk)√

2π(n− sk)/k

((n− sk)/e)n−sk

((n− sk)/ke)(n−sk)/k(k!)n/k−s

≤ e

(
e(k − 1)!

(n− sk)k−1

)s

≤
(

C

nk−1

)s

Using theorem 4.10, there exists a constant L such that a uniformly random (Ln log n)-

element subset of X belongs to ⟨H⟩ with high probability. This result was first proved

by Johansson, Kahn, and Vu [17].

Hamilton cycles in graphs: Recall the example of Hamilton cycles in the last

chapter. There are (n−1)!
2

possible Hamilton cycles in a random graph. Let X =
(
[n]
2

)
and H be the subset of 2X , each of whose elements corresponds to a Hamilton cycle

on n vertices. Notice that H is n-uniform. We will show that H is C
n

-spread for some

37



large C. For ∀S ⊆ X with |S| = s, using Stirling’s approximation we have

|H ∩ ⟨S⟩ |
|H|

≤ 2s(n− s)!/2(n− s)

n!/2n

≤ 2se

√
2π(n− s− 1)√

2π(n− 1)

((n− s− 1)/e)n−s−1

((n− 1)/e)n−1

≤ 2ses+1

(
1

n− 1

)s

≤
(
C

n

)s

where C is large enough. Then by the theorem 4.10, we have that a random uniform

Ln log n-element subset of X belongs to ⟨H⟩ with high probability. As we mentioned

above, Pósa proved this result in [25].

Loose Hamilton cycles: In k-uniform random hypergraph on n vertices. A loose

Hamilton cycle is a collection of r = n
k−1

(suppose (k − 1) | n) edges such that for

some cyclic order of [n], each edge contains consecutive k vertices and each pair of

consecutive edges has exactly one common vertex. In the fig. 4.1, we give an example

Figure 4.1: Loose Hamilton cycle

of 3-uniform loose Hamilton cycle on 6 vertices. Notice that we can divide the vertices

into 3 disjoint parts according to the loose Hamilton cycle. In other words, a loose

k-uniform Hamilton cycle on n vertices can induce a partition of the cyclic ordered

[n] and each part contains k−1 vertices. There are n!
2n

k−1
((k−2)!)r

possible loose Hamilton

cycles. The term n!
2n

comes from cyclic permutation. The term k− 1 comes from how

we divide the cyclic ordered [n] into r parts. Within each hyperedge, the order is

trivial, so we divide ((k − 2)!)r. Let X =
(
[n]
k

)
and H be the subset of 2X , each of

whose elements corresponds to a loose Hamilton cycle on n vertices. Notice that H
is r-bounded and we will show that H is C

nk−1 -spread for some large C. For ∀S ⊆ X
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with |S| = s, using Stirling’s approximation we have

|H ∩ ⟨S⟩ |
|H|

≤ 2n((k − 2)!)r

(k − 1)n!

(n− ks + s)!

2(n− ks + s)

(k(k − 1))s

((k − 2)!)r−s

=
((k − 2)!)s(k(k − 1))s

k − 1

(n− (k − 1)s− 1)!

(n− 1)!

≤ (k!)se

k − 1

√
2π(n− (k − 1)s− 1)√

2π(n− 1)

((n− (k − 1)s− 1)/e)n−(k−1)s−1

((n− 1)/e)n−1

≤ (k!)se(k−1)s+1

k − 1

(
1

n− 1

)(k−1)s

≤
(

C

nk−1

)s

where C is large enough. Then by the theorem 4.10, we have that a random uniform

Ln log n-element subset of X belongs to ⟨H⟩ with high probability. This result was

first given by Dudek and Frieze [7].

Bounded degree spanning trees: Let H be the family of edges set of all spanning

trees of the complete graph Kn with maximum degree ∆ = O(1). In other words, H is

a (n−1)-uniform subset of 2X where X =
(
[n]
2

)
and each element of H corresponds to

a ∆-bounded spanning tree. To use theorem 4.10, we will show that H is ∆
n−1

-spread.

If S ⊆ X is not a subset of any element in H, then H∩⟨S⟩ = ∅. Suppose that S ⊆ X

is a subset of some element T in H. Let π be a random permutation of [n] and

π(T ) = {π(u)π(v) : uv ∈ T}.

It is found that π(T ) induces a ∆-bounded spanning tree isomorphic to T and π(T ) ∈
H trivially. Since isomorphism induces a partition of H, we have

|H ∩ ⟨S⟩ |
|H|

≤ max
T

P(S ⊆ π(T )) ≤
(

∆

n− 1

)|S|

and the second inequality holds since for each edge in S we have at most ∆ choices for

one end after the other end has been determined. Then by theorem 4.10, a uniformly

random (Ln log n)-element subset of X belongs to ⟨H⟩ with high probability. This

result was first given by Montgomery [22].
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Chapter 5

Proofs

In this chapter, we will first prove that the theorem 4.4 can be implied from the

theorem 4.5. Then we use iteration to prove the theorem 4.5. In the proof, we try to

find a small partial cover of H, i.e. cover part of H through the uniformly chosen set

Wi in the ith step. The iteration will result in two cases

1. We find a cover of H whose expectation cost is small, or

2. there is a uniformly chosen ((Lp log ℓ)|X|)-element subset of X belonging to

⟨H⟩.

If H is not p-small, the case 1 can never occur. Then the proof of the theorem 4.5 is

completed. We will first state how to find the cover in each step and show the cover

is expected small. After that, we will show how the iteration leads to the exactly two

final cases and complete the proof we want. The proofs reference [24].

5.1 Proof of reduction

Proof. (theorem 4.4 can be implied from the theorem 4.5) Let H be the set of minimal

elements of the property F , i.e. ⟨H⟩ = F . Recall theorem 4.5, let ℓ = Cℓ(F) and

m = (Lp log ℓ)|X|, where p > q(F) and C is large enough to make

P(Xm ∈ ⟨H⟩) ≥ 3

4
.

Let p′ = 2Lp log ℓ, we have

P(Xp′ ∈ F) = P(Xp′ ∈ ⟨H⟩) ≥ P(Xm ∈ ⟨H⟩)P(|Xp′| ≥ m).
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To show P(Xp′ ∈ F) ≥ 1
2
, we just need to show that P(|Xp′| ≥ m) ≥ 2

3
. Notice that

E[|Xp′|] = p′|X| = 2m, we have

P(|Xp′| ≥ m) ≥ P(||Xp′ | − 2m)| ≤ m)

≥ 1 − Var(|Xp′|)
m2

= 1 − 2m(1 − p′)

m2

by Chebyshev’s inequality. Consider that the subset of 2X consisting of all single-

element sets is a trivial cover of ⟨H⟩. We have p|X| > 1
2

since H is not p-small.

It follows that 2m = p′|X| ≥ L log ℓ and P(|Xp′ | ≥ m) ≥ 2
3

when L large enough.

Therefore, we have

P(Xp′ ∈ F) ≥ 3

4
P(|Xp′| ≥ m) ≥ 1

2

which implies that

p′ = 2Lp log ℓ ≥ pc(F).

Recall that p can be any value greater than q(F), we have completed our proof.

5.2 Proof of the theorem 4.5

Proof. Our proof is divided into three parts and we prove the result by iteration.

In the first part, we will show how to construct a small partial cover of H in each

iteration step. In the second part, we will analyze the iteration and state the final

cases when the iteration ends. Finally, we show that one of the final cases occurs

with high probability which is exactly the result we want to prove. Let |X| = n in

our proof.

Part 1. In the ith step, let wi = Lipn where Li is a large constant and Wi be the

random subset uniformly chosen from
(
Xi−1

wi

)
where Xi = Xi−1\Wi and X0 = X. Let

H0 = H and Hi is a 0.9iℓ-bounded subset of 2Xi for i ≥ 1.

Given Si−1 ∈ Hi−1, we define the minimum fragment T (Si−1,Wi) as the set with

the smallest size that can be written as the form of S ′
i−1\Wi where S ′

i−1 ⊆ Si−1 ∪Wi

and S ′
i−1 ∈ Hi−1. Let t(Si−1,Wi) = |T (Si−1,Wi)|. Let G(Wi) be the set of elements

in Hi−1 such that T (Si−1,Wi) is relatively large as follow,

G(Wi) := {Si−1 ∈ Hi−1 : t(Si−1,Wi) ≥ 0.9iℓ}.

Since T (Si−1,Wi) ⊆ Si−1, we have a cover U(Wi) of G(Wi) as follows,

U(Wi) := {T (Si−1,Wi) : Si−1 ∈ G(Wi)}.
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In terms of Hi−1\G(Wi), it is not always covered by U(Wi). Let

Hi := {T (Si−1,Wi) : Si−1 ∈ Hi−1\G(Wi)},

and we have that Hi is a 0.9iℓ-bounded subset of 2Xi−1\Wi = 2Xi . Notice that

T (Si−1,Wi) ⊆ Si−1, it follows that a cover of Hi is also a cover of Hi−1\G(Wi).

Part 2. Notice that in each iteration step, the size bound of elements in Hi

strictly decreases. Thus there is a k such that 0.9 ≤ 0.9kℓ < 1, which implies that

Hk is either an empty set or only contains the empty set. So, our iteration can end

within k steps. Now let’s analyze the two different cases when the iteration ends.

1. If Hk = ∅, then
⋃k

i=1 U(Wi) is a cover of H. We show this fact by induction.

Since Hk = ∅, we have

Hk−1 = Hk ∪ G(Wk) = G(Wk).

It follows that U(Wk) is a cover of Hk−1.

Suppose that
⋃k

i=j U(Wi) is a cover of Hj−1 which implies that it is also a cover

of Hj−2\G(Wj−1). Since U(Wj−1) is a cover of G(Wj−1), we have
⋃k

i=j U(Wi) ∪
U(Wj−1) is a cover of Hj−2, that is,

⋃k
i=j−1 U(Wi) is a cover of Hj−2.

Finally, we have
⋃k

i=1 U(Wi) is a cover of H0 = H.

2. If Hk = {∅}, then
⊔k

i=1 Wi ∈ ⟨H⟩. We also prove this fact by induction. Since

Hk = {∅}, we have that

∅ = T (Sk−1,Wk) = S ′
k−1\Wk for some S ′

k−1 ∈ Hk−1.

It follows that S ′
k−1 ⊆ Wk. In other words, we have Wk ∈

〈
S ′
k−1

〉
⊆ ⟨Hk−1⟩.

Suppose that
⊔k

i=j Wi ∈ ⟨Hj−1⟩ which implies that there is an Sj−1 ∈ Hj−1 such

that Sj−1 ⊆
⊔k

i=j Wi. Since

Sj−1 = T (Sj−2,Wj−1) = S ′
j−2\Wj−1 for some S ′

j−2 ∈ Hj−2,

we have S ′
j−2 ⊆ Sj−1 ∪Wj−1. It follows that S ′

j−2 ⊆
⊔k

i=j Wi ⊔Wj−1. In other

words,
⊔k

i=j−1Wi ∈
〈
S ′
j−2

〉
⊆ ⟨Hj−2⟩ .

Finally, we have
⊔k

i=1 Wi ∈ ⟨H0⟩ = ⟨H⟩.

Part 3. We first show that each partial cover U(Wi) is expected small enough.

Let ℓi = 0.9iℓ.
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Lemma 5.1. E
[∑

U∈U(Wi)
p|U |
]
≤ L

−0.8ℓi−1

i .

Proof. Recall the definition of U(Wi), we have that ℓi ≤ |U | ≤ ℓi−1 and U =

T (Si−1,Wi) for some Si−1 ∈ Hi−1. Expand the expectation, and we have

E

 ∑
U∈U(Wi)

p|U |

 =
∑

Wi∈(Xi−1
wi

)

1(|Xi−1|
wi

) ∑
U∈U(Wi)

p|U |

=
1(|Xi−1|
wi

) ∑
ℓi≤h≤ℓi−1

(
ph ×Nh

)
where Nh = #{(Wi, T (Si−1,Wi)) : Wi ∈

(
Xi−1

wi

)
, T (Si−1,Wi) = h, Si−1 ∈ Hi−1}. Then

we estimate Nh as follows.

1. Specify Z = Wi ⊔ T (Si−1,Wi). The number of possible Z is at most(
|Xi−1|
wi + h

)
=

(
|Xi−1|
wi

)
(|Xi−1| − wi) · · · (|Xi−1| − wi − h + 1)

(wi + 1) · · · (wi + h)

≤
(
|Xi−1|
wi

)(
n

wi

)h

=

(
|Xi−1|
wi

)(
1

Lip

)h

.

2. Specify T (Si−1,Wi). For any S ′′
i−1 ⊆ Z and S ′′

i−1 ∈ Hi−1, we claim that

T (Si−1,Wi) ⊆ S ′′
i−1. This key observation is from minimum fragment. Since Z is

the disjoint union of Wi and T (Si−1,Wi), we have S ′′
i−1\Wi ⊆ T (Si−1,Wi). Sup-

pose that S ′′
i−1\Wi ⊊ T (Si−1,Wi), it is easy to check that S ′′

i−1\Wi with smaller

size than T (Si−1,Wi) which is contradictory to the definition of T (Si−1,Wi).

Thus, we can pick a Hi−1 ∋ S ′′
i−1 ⊆ Z arbitrarily and T (Si−1,Wi) is always

contained in it which implies that we have at most 2ℓi−1 possible T (Si−1,Wi).

3. After specify Z and T (Si−1,Wi), we have Wi = Z\T (Si−1,Wi).

Therefore, we have

Nh ≤
(
|Xi−1|
wi

)(
1

Lip

)h

2ℓi−1

and

E

 ∑
U∈U(Wi)

p|U |

 ≤
∑

ℓi≤h≤ℓi−1

((
1

Li

)h

2ℓi−1

)
≤ L

−0.8ℓi−1

i .

The last inequality holds since Li is large.
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In Part 2., we have shown that there are exactly two final cases which imply that

P

(
k⋃

i=1

U(Wi) is a cover of H

)
+ P

(
k⊔

i=1

Wi ∈ ⟨H⟩

)
≥ 1

and equivalently

P

(
k⊔

i=1

Wi ∈ ⟨H⟩

)
≥ 1 − P

(
k⋃

i=1

U(Wi) is a cover of H

)
. (5.1)

By the assumption that ‘H is not p-small ’, we have

P

(
k⋃

i=1

U(Wi) is a cover of H

)
≤ P

 ∑
U∈

⋃k
i=1 U(Wi)

p|U | >
1

2

 . (5.2)

Now we estimate the expectation of
∑

U∈
⋃k

i=1 U(Wi)
p|U | by lemma 5.1. Let

Li =

{
C if i < k −

√
log0.9 (0.9/ℓ)

C
√

log ℓ if k −
√

log0.9 (0.9/ℓ) ≤ i ≤ k

where C is a large constant and let log0.9 (0.9/ℓ) = c log ℓ where c > 0. We have

E

 ∑
U∈

⋃k
i=1 U(Wi)

p|U |

 ≤
k∑

i=1

E

 ∑
U∈U(Wi)

p|U |


≤

k∑
i=1

L
−0.8ℓi−1

i

=
∑

i<k−
√
c log ℓ

C−0.8·0.9i−1ℓ +
k∑

i≥k−
√
c log ℓ

(
C
√

log ℓ
)−0.8·0.9i−1ℓ

Recall that 0.9 ≤ 0.9kℓ < 1, we have

c log ℓ− 1 = log0.9

1

ℓ
< k ≤ log0.9

0.9

ℓ
= c log ℓ

exp
(
c′
√

log ℓ
)
≤ 0.9i−1ℓ if i < k −

√
c log ℓ

1 ≤ 0.9k−1ℓ and 1 < 0.8 · 0.9k−4ℓ

where c′ > 0 is a constant. It follows that

E

 ∑
U∈

⋃k
i=1 U(Wi)

p|U |

 ≤ (c log ℓ)C−0.8·exp(c′
√
log ℓ) +

√
c log ℓ

(
C
√
log ℓ

)−0.8·0.9k−4ℓ
+ 3

(
C
√
log ℓ

)−0.8

= O((log ℓ)−ĉ)

= oℓ→∞(1)
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where ĉ > 0 is a constant and
√
c log ℓ ≥ 3 when ℓ is large. Use Markov’s inequality

in (5.2), we have

P

(
k⋃

i=1

U(Wi) is a cover of H

)
≤ P

 ∑
U∈

⋃k
i=1 U(Wi)

p|U | >
1

2


≤ 2E

 ∑
U∈

⋃k
i=1 U(Wi)

p|U |


= oℓ→∞(1)

which implies that

P

(
k⊔

i=1

Wi ∈ ⟨H⟩

)
≥ 1 − P

(
k⋃

i=1

U(Wi) is a cover of H

)
≥ 1 − oℓ→∞(1).

by (5.1). Notice that
⊔k

i=1Wi is a
(∑k

i=1 Lipn
)

-element uniform subset of X where∑k
i=1 Lipn = (Lp log ℓ) |X| for some L, we complete our proof.
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Chapter 6

Discussion

Park and Pham’s proof of the Kahn-Kalai conjecture is a remarkable breakthrough

in random combinatorics, attracting widespread attention. Recall that we choose the

p(1
2
) to be the threshold and p(ϵ) for ϵ ∈ (0, 1) is defined as follows

P(G(n, p(ϵ)) has F) = ϵ.

For fixed ϵ, Park and Pham’s work also can provide an upper bound. But their bound

dependent on ϵ is not good enough. Bell [2] proposed this problem and showed a better

ϵ-dependent upper bound.

Theorem 6.1. Let H be an ℓ-bounded subset of 2X that is not q-small and let ϵ ∈
(0, 1). Let p = 48q log ℓ

ϵ
. Then P(Xp ∈ ⟨H⟩) > 1 − ϵ.

The arguments in [2] also give a slightly better bound for the threshold as follows

pc(F) ≤ 1 − (1 −Kq(F))log2 ℓ(F).

Przyby lowski and Riordan [26] slightly improved this bound by a technique clone

pc(F) ≤ 1 − e−Kq(F) log2 ℓ(F).

Other endeavours tend to give bounds on the multiplicative constant K. The best

known work due to Vu and Tran [30] is K ≈ 3.998. They proposed a simplification

of Park and Pham’s proof by technically strengthening the theorem 4.5 and applying

induction. This reduces the proof to only one page and also applies to ϵ-dependent

problem.

Kahn-Kalai conjecture (now Park-Pham theorem) is extremely powerful, implying

very difficult results historically such as Shamir’s problem and bounded degree span-

ning tree as we mentioned before. We end this dissertation with two open conjectures

as Park mentioned in [23].
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The first conjecture is the graph version of the Kahn-Kalai conjecture. Recall

the definition of abstract expectation threshold and expectation threshold in graphs

(definition 4.3 and definition 4.2). We claim that

pE(H) ≤ q(FH)

where FH is the property that the random graph G(n, p) contains H as a subgraph.

This claim is easy to check since ⟨H ′⟩ is a cover of FH for ∀H ′ ⊆ H. Though the

abstract Kahn-Kalai conjecture has been proved, the graph version is open. This

conjecture was also proposed by Kahn and Kalai in [19].

Conjecture 6.2. Let FH be the property that the random graph G(n, p) contains H

as a subgraph. There is a universal constant K such that

pc(FH) ≤ KpE(H) log n.

The second conjecture tries to solve the problem that it is not easy to compute

q(F). Recall that the fractional expectation threshold qf (F) has a close relationship

with spread (refer to proposition 4.9 and [29]). Through finding an α-spread a bound

probability measure on F , we can get an upper bound of qf (F). Many applications

use this idea to apply the fractional Kahn-Kalai conjecture. Talagrand proposes the

following conjecture which implies the equivalence between the fractional Kahn-Kalai

conjecture and the Kahn-Kalai conjecture.

Conjecture 6.3. Let F be an increasing property in finite set X. There exists a

constant K such that

qf (F) ≤ Kq(F).
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[27] A Rényi. Quelques remarques ser les probabilites des evenements dependants.

Journal de Mathematique, 37(393-398):216, 1958.

[28] Oliver Riordan. Probabilistic Combinatorics. 2019. https://courses.maths.

ox.ac.uk/pluginfile.php/27059/mod_resource/content/1/LectureNotes.

pdf.

[29] Michel Talagrand. Are many small sets explicitly small? In Proceedings of the

forty-second ACM symposium on Theory of computing, pages 13–36, 2010.

[30] Van Vu and Phuc Tran. A short proof of kahn-kalai conjecture. arXiv preprint

arXiv:2303.02144, 2023.

50

https://courses.maths.ox.ac.uk/pluginfile.php/27059/mod_resource/content/1/LectureNotes.pdf
https://courses.maths.ox.ac.uk/pluginfile.php/27059/mod_resource/content/1/LectureNotes.pdf
https://courses.maths.ox.ac.uk/pluginfile.php/27059/mod_resource/content/1/LectureNotes.pdf

	Introduction
	Preliminaries
	Results in Probability Theory
	Models of random graphs
	Threshold phenomenon

	Examples of threshold
	Small subgraph
	Connectedness
	Hamilton cycles and perfect matchings

	Kahn-Kalai Conjecture
	Kahn-Kalai Conjecture
	Fractional Kanh-Kalai Conjecture

	Proofs
	Proof of reduction
	Proof of the redmain

	Discussion
	References

